Symmetry Robust Descriptor for Non-Rigid Surface Matching
نویسندگان
چکیده
In this paper, we propose a novel shape descriptor that is robust in differentiating intrinsic symmetric points on geometric surfaces. Our motivation is that even the state-of-the-art shape descriptors and non-rigid surface matching algorithms suffer from symmetry flips. They cannot differentiate surface points that are symmetric or near symmetric. Hence a left hand of one human model may be matched to a right hand of another. Our Symmetry Robust Descriptor (SRD) is based on a signed angle field, which can be calculated from the gradient fields of the harmonic fields of two point pairs. Experiments show that the proposed shape descriptor SRD results in much less symmetry flips compared to alternative methods. We further incorporate SRD into a stand-alone algorithm to minimize symmetry flips in finding sparse shape correspondences. SRD can also be used to augment other modern non-rigid shape matching algorithms with ease to alleviate symmetry confusions.
منابع مشابه
Thing Locally, Fit Globally: Robust and Fast 3D Shape Matching via Adaptive Algebraic Fitting
In this paper, we propose a novel 3D free form surface matching method based on a novel key-point detector and a novel feature descriptor. The proposed detector is based on algebraic surface fitting. By global smooth fitting, our detector achieved high computational efficiency and robustness against non-rigid deformations. For the feature descriptor, we provide algorithms to compute 3D critical...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملRobust 2D Shape Correspondence using Geodesic Shape Context
A meaningful correspondence and similarity measure between shapes is particularly useful in applications such as morphing, object recognition, shape registration and retrieval. In this paper, we present a robust shape descriptor for points along a 2D contour, based on the curvature distribution collected over bins arranged geodesically along the contour. Convolution, binning and hysteresis thre...
متن کاملRotation Invariant Non-rigid Shape Matching in Cluttered Scenes
This paper presents a novel and efficient method for locating deformable shapes in cluttered scenes. The shapes to be detected may undergo arbitrary translational and rotational changes, and they can be non-rigidly deformed, occluded and corrupted by clutters. All these problems make the accurate and robust shape matching very difficult. By using a new shape representation, which involves a pow...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 32 شماره
صفحات -
تاریخ انتشار 2013